|  | OpenANN
    1.1.0
    An open source library for artificial neural networks. | 
|   OpenANN::ActionSpace | Represents the action space  in a reinforcement learning problem | 
|   net.Activation | |
|   metalearning.AdaBoost | |
|   OpenANN::Agent | A (learning) agent in a reinforcement learning problem | 
|   OpenANN::TriangleConstraint::AngleTuple | |
|   metalearning.Bagging | |
|   BCIDataSet::BCIDataCache | |
|   CIFARLoader | Loads the CIFAR-10 dataset | 
|   CMAES< T > | |
|   CMAES< double > | |
|   OpenANN::CompressionMatrixFactory | Creates several types of matrices for compression | 
|   preprocessing.Compressor | |
|   OpenANN::SigmaPi::Constraint | A helper class for specifying weight constrains in a higher-order neural network Derive a new class from this interface and simple reimplement the function call operator for the corresponding higher-order term | 
|   OpenANN::DataSet | Data set interface | 
|   dataset.DataSet | |
|   OpenANN::DataStream | Streams training data for online training | 
|   dataset.DataStream | |
|   Decimator | |
|   Distorter | Creates distorted images | 
|   DoubleExponentialSmoothing | |
|   OpenANN::EnsembleLearner | |
|   net.Error | |
|   OpenANN::Evaluator | Evaluates a Learner | 
|   std::exception | STL class | 
|   OpenANN::FloatingPointFormatter | Wraps a value and its precision for logging | 
|   OpenANN::SigmaPi::HigherOrderUnit | |
|   IDXLoader | |
|   preprocessing.KMeans | |
|   OpenANN::Layer | Interface that has to be implemented by all layers of a neural network that can be trained with backpropagation | 
|   layer.Layer | |
|   net.Learner | |
|   OpenANN::Log | Global logger | 
|   util.Log | |
|   OpenANN::Logger | A local logger that can redirect messages to several targets | 
|   preprocessing.Normalization | |
|   util.OpenANN | |
|   OpenANN::OpenANNLibraryInfo | Provides information about the OpenANN library | 
|   OpenANN::Optimizable | Represents an optimizable object | 
|   optimization.Optimizer | |
|   OpenANN::Optimizer | The common interface of all optimization algorithms | 
|   OpenANN::OutputInfo | Provides information about the output of a layer | 
|   Parameters< T > | |
|   Parameters< double > | |
|   preprocessing.PCA | |
|   QGLWidget | |
|   util.RandomNumberGenerator | |
|   OpenANN::RandomNumberGenerator | A utility class that simplifies the generation of random numbers | 
|   OpenANN::Regularization | Holds all information related to regularization terms in an error function | 
|   OpenANN::StateSpace | Represents the state space  in a reinforcement learning problem | 
|   optimization.StoppingCriteria | |
|   OpenANN::StoppingCriteria | Stopping criteria for optimization algorithms | 
|   OpenANN::StoppingInterrupt | A system-independent interface for checking interrupts that can signals the end of the optimization process externally | 
|   Stopwatch | |
|   preprocessing.Transformation | |
|   OpenANN::Transformer | Common base for all transformations | 
|   preprocessing.ZCAWhitening | 
 1.8.4
 1.8.4