![]() |
OpenANN
1.1.0
An open source library for artificial neural networks.
|
K-means clustering. More...
#include <KMeans.h>
Inheritance diagram for OpenANN::KMeans:Public Member Functions | |
| KMeans (int D, int K) | |
| Create KMeans object. More... | |
| virtual Transformer & | fit (const Eigen::MatrixXd &X) |
| Fit transformation according to training set X. More... | |
| virtual Eigen::MatrixXd | transform (const Eigen::MatrixXd &X) |
| Transform the data. More... | |
| Eigen::MatrixXd | operator() (const Eigen::MatrixXd &X) |
| Compute for each instance the distances to the centers. More... | |
| Eigen::MatrixXd | getCenters () |
| Get the learned centers. More... | |
Public Member Functions inherited from OpenANN::Transformer | |
| virtual | ~Transformer () |
| virtual Transformer & | fitPartial (const Eigen::MatrixXd &X) |
| Fit transformation according to subset of the training set X. More... | |
K-means clustering.
This is an iterative implementation based on mini-batch stochastic gradient descent [1].
[1] Sculley, D.: Web-scale k-means clustering, Proceedings of the 19th international conference on World wide web, pp. 1177-1178, ISBN 978-1-60558-799-8, 2010.
| OpenANN::KMeans::KMeans | ( | int | D, |
| int | K | ||
| ) |
Create KMeans object.
| D | number of features |
| K | number of centers |
|
virtual |
Fit transformation according to training set X.
| X | each row represents an instance |
Implements OpenANN::Transformer.
| Eigen::MatrixXd OpenANN::KMeans::getCenters | ( | ) |
Get the learned centers.
| Eigen::MatrixXd OpenANN::KMeans::operator() | ( | const Eigen::MatrixXd & | X) |
Compute for each instance the distances to the centers.
This is an alias for transform().
| X | each row represents an instance |
|
inlinevirtual |
Transform the data.
| X | each row represents an instance |
Implements OpenANN::Transformer.
1.8.4