|  | 
|  | NeuroEvolutionAgent (int h, bool b, const std::string &a, bool compress=false, int m=0, bool fullyObservable=true, bool alphaBetaFilter=false, bool doubleExponentialSmoothing=false) | 
|  | 
|  | ~NeuroEvolutionAgent () | 
|  | 
| virtual void | abandoneIn (Environment &environment) | 
|  | Abandon an agent in an environment.  More... 
 | 
|  | 
| virtual void | chooseAction () | 
|  | Choose an action and execute it in the environment.  More... 
 | 
|  | 
| virtual void | chooseOptimalAction () | 
|  | Choose an action and execute it in the environment.  More... 
 | 
|  | 
| virtual const Eigen::VectorXd & | currentParameters () | 
|  | Request the current parameters.  More... 
 | 
|  | 
| virtual unsigned int | dimension () | 
|  | Request the number of optimizable parameters.  More... 
 | 
|  | 
| virtual double | error () | 
|  | Compute error on training set.  More... 
 | 
|  | 
| virtual Eigen::VectorXd | gradient () | 
|  | Compute gradient of the error function with respect to the parameters.  More... 
 | 
|  | 
| virtual void | initialize () | 
|  | Initialize the optimizable parameters.  More... 
 | 
|  | 
| virtual bool | providesGradient () | 
|  | Check if the object provides a gradient of the error function with respect to its parameters.  More... 
 | 
|  | 
| virtual bool | providesInitialization () | 
|  | Check if the object knows how to initialize its parameters.  More... 
 | 
|  | 
| virtual void | setParameters (const Eigen::VectorXd ¶meters) | 
|  | Set new parameters.  More... 
 | 
|  | 
| void | setSigma0 (double sigma0) | 
|  | 
| virtual | ~Agent () | 
|  | 
| virtual | ~Optimizable () | 
|  | 
| virtual void | finishedIteration () | 
|  | This callback is called after each optimization algorithm iteration.  More... 
 | 
|  | 
| virtual unsigned | examples () | 
|  | Request number of training examples.  More... 
 | 
|  | 
| virtual double | error (unsigned n) | 
|  | Compute error of a given training example.  More... 
 | 
|  | 
| virtual Eigen::VectorXd | gradient (unsigned n) | 
|  | Compute gradient of a given training example.  More... 
 | 
|  | 
| virtual void | errorGradient (int n, double &value, Eigen::VectorXd &grad) | 
|  | Calculates the function value and gradient of a training example.  More... 
 | 
|  | 
| virtual void | errorGradient (double &value, Eigen::VectorXd &grad) | 
|  | Calculates the function value and gradient of all training examples.  More... 
 | 
|  | 
| virtual Eigen::VectorXd | error (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) | 
|  | Calculates the errors of given training examples.  More... 
 | 
|  | 
| virtual Eigen::VectorXd | gradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) | 
|  | Calculates the accumulated gradient of given training examples.  More... 
 | 
|  | 
| virtual void | errorGradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN, double &value, Eigen::VectorXd &grad) | 
|  | Calculates the accumulated gradient and error of given training examples.  More... 
 | 
|  |