| 
|   | NeuroEvolutionAgent (int h, bool b, const std::string &a, bool compress=false, int m=0, bool fullyObservable=true, bool alphaBetaFilter=false, bool doubleExponentialSmoothing=false) | 
|   | 
|   | ~NeuroEvolutionAgent () | 
|   | 
| virtual void  | abandoneIn (Environment &environment) | 
|   | Abandon an agent in an environment.  More...
  | 
|   | 
| virtual void  | chooseAction () | 
|   | Choose an action and execute it in the environment.  More...
  | 
|   | 
| virtual void  | chooseOptimalAction () | 
|   | Choose an action and execute it in the environment.  More...
  | 
|   | 
| virtual const Eigen::VectorXd &  | currentParameters () | 
|   | Request the current parameters.  More...
  | 
|   | 
| virtual unsigned int  | dimension () | 
|   | Request the number of optimizable parameters.  More...
  | 
|   | 
| virtual double  | error () | 
|   | Compute error on training set.  More...
  | 
|   | 
| virtual Eigen::VectorXd  | gradient () | 
|   | Compute gradient of the error function with respect to the parameters.  More...
  | 
|   | 
| virtual void  | initialize () | 
|   | Initialize the optimizable parameters.  More...
  | 
|   | 
| virtual bool  | providesGradient () | 
|   | Check if the object provides a gradient of the error function with respect to its parameters.  More...
  | 
|   | 
| virtual bool  | providesInitialization () | 
|   | Check if the object knows how to initialize its parameters.  More...
  | 
|   | 
| virtual void  | setParameters (const Eigen::VectorXd ¶meters) | 
|   | Set new parameters.  More...
  | 
|   | 
| void  | setSigma0 (double sigma0) | 
|   | 
| virtual  | ~Agent () | 
|   | 
| virtual  | ~Optimizable () | 
|   | 
| virtual void  | finishedIteration () | 
|   | This callback is called after each optimization algorithm iteration.  More...
  | 
|   | 
| virtual unsigned  | examples () | 
|   | Request number of training examples.  More...
  | 
|   | 
| virtual double  | error (unsigned n) | 
|   | Compute error of a given training example.  More...
  | 
|   | 
| virtual Eigen::VectorXd  | gradient (unsigned n) | 
|   | Compute gradient of a given training example.  More...
  | 
|   | 
| virtual void  | errorGradient (int n, double &value, Eigen::VectorXd &grad) | 
|   | Calculates the function value and gradient of a training example.  More...
  | 
|   | 
| virtual void  | errorGradient (double &value, Eigen::VectorXd &grad) | 
|   | Calculates the function value and gradient of all training examples.  More...
  | 
|   | 
| virtual Eigen::VectorXd  | error (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) | 
|   | Calculates the errors of given training examples.  More...
  | 
|   | 
| virtual Eigen::VectorXd  | gradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) | 
|   | Calculates the accumulated gradient of given training examples.  More...
  | 
|   | 
| virtual void  | errorGradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN, double &value, Eigen::VectorXd &grad) | 
|   | Calculates the accumulated gradient and error of given training examples.  More...
  | 
|   |