|
| Learner () |
|
virtual | ~Learner () |
|
virtual Eigen::VectorXd | operator() (const Eigen::VectorXd &x)=0 |
| Make a prediction. More...
|
|
virtual Eigen::MatrixXd | operator() (const Eigen::MatrixXd &X)=0 |
| Make predictions. More...
|
|
virtual Learner & | trainingSet (Eigen::MatrixXd &input, Eigen::MatrixXd &output) |
| Set training set. More...
|
|
virtual Learner & | trainingSet (DataSet &trainingSet) |
| Set training set. More...
|
|
virtual Learner & | removeTrainingSet () |
| Remove the training set from the learner. More...
|
|
virtual Learner & | validationSet (Eigen::MatrixXd &input, Eigen::MatrixXd &output) |
| Set validation set. More...
|
|
virtual Learner & | validationSet (DataSet &validationSet) |
| Set validation set. More...
|
|
virtual Learner & | removeValidationSet () |
| Remove the validation set from the learner. More...
|
|
virtual | ~Optimizable () |
|
virtual void | finishedIteration () |
| This callback is called after each optimization algorithm iteration. More...
|
|
virtual bool | providesInitialization ()=0 |
| Check if the object knows how to initialize its parameters. More...
|
|
virtual void | initialize ()=0 |
| Initialize the optimizable parameters. More...
|
|
virtual unsigned | dimension ()=0 |
| Request the number of optimizable parameters. More...
|
|
virtual const Eigen::VectorXd & | currentParameters ()=0 |
| Request the current parameters. More...
|
|
virtual void | setParameters (const Eigen::VectorXd ¶meters)=0 |
| Set new parameters. More...
|
|
virtual double | error ()=0 |
| Compute error on training set. More...
|
|
virtual bool | providesGradient ()=0 |
| Check if the object provides a gradient of the error function with respect to its parameters. More...
|
|
virtual Eigen::VectorXd | gradient ()=0 |
| Compute gradient of the error function with respect to the parameters. More...
|
|
virtual unsigned | examples () |
| Request number of training examples. More...
|
|
virtual double | error (unsigned n) |
| Compute error of a given training example. More...
|
|
virtual Eigen::VectorXd | gradient (unsigned n) |
| Compute gradient of a given training example. More...
|
|
virtual void | errorGradient (int n, double &value, Eigen::VectorXd &grad) |
| Calculates the function value and gradient of a training example. More...
|
|
virtual void | errorGradient (double &value, Eigen::VectorXd &grad) |
| Calculates the function value and gradient of all training examples. More...
|
|
virtual Eigen::VectorXd | error (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) |
| Calculates the errors of given training examples. More...
|
|
virtual Eigen::VectorXd | gradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) |
| Calculates the accumulated gradient of given training examples. More...
|
|
virtual void | errorGradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN, double &value, Eigen::VectorXd &grad) |
| Calculates the accumulated gradient and error of given training examples. More...
|
|
Common base class of all learning algorithms.
A learner combines a model and a training set so that an Optimizer can minimize the error function on the training set.