|
| | Learner () |
| |
| virtual | ~Learner () |
| |
| virtual Eigen::VectorXd | operator() (const Eigen::VectorXd &x)=0 |
| | Make a prediction. More...
|
| |
| virtual Eigen::MatrixXd | operator() (const Eigen::MatrixXd &X)=0 |
| | Make predictions. More...
|
| |
| virtual Learner & | trainingSet (Eigen::MatrixXd &input, Eigen::MatrixXd &output) |
| | Set training set. More...
|
| |
| virtual Learner & | trainingSet (DataSet &trainingSet) |
| | Set training set. More...
|
| |
| virtual Learner & | removeTrainingSet () |
| | Remove the training set from the learner. More...
|
| |
| virtual Learner & | validationSet (Eigen::MatrixXd &input, Eigen::MatrixXd &output) |
| | Set validation set. More...
|
| |
| virtual Learner & | validationSet (DataSet &validationSet) |
| | Set validation set. More...
|
| |
| virtual Learner & | removeValidationSet () |
| | Remove the validation set from the learner. More...
|
| |
| virtual | ~Optimizable () |
| |
| virtual void | finishedIteration () |
| | This callback is called after each optimization algorithm iteration. More...
|
| |
| virtual bool | providesInitialization ()=0 |
| | Check if the object knows how to initialize its parameters. More...
|
| |
| virtual void | initialize ()=0 |
| | Initialize the optimizable parameters. More...
|
| |
| virtual unsigned | dimension ()=0 |
| | Request the number of optimizable parameters. More...
|
| |
| virtual const Eigen::VectorXd & | currentParameters ()=0 |
| | Request the current parameters. More...
|
| |
| virtual void | setParameters (const Eigen::VectorXd ¶meters)=0 |
| | Set new parameters. More...
|
| |
| virtual double | error ()=0 |
| | Compute error on training set. More...
|
| |
| virtual bool | providesGradient ()=0 |
| | Check if the object provides a gradient of the error function with respect to its parameters. More...
|
| |
| virtual Eigen::VectorXd | gradient ()=0 |
| | Compute gradient of the error function with respect to the parameters. More...
|
| |
| virtual unsigned | examples () |
| | Request number of training examples. More...
|
| |
| virtual double | error (unsigned n) |
| | Compute error of a given training example. More...
|
| |
| virtual Eigen::VectorXd | gradient (unsigned n) |
| | Compute gradient of a given training example. More...
|
| |
| virtual void | errorGradient (int n, double &value, Eigen::VectorXd &grad) |
| | Calculates the function value and gradient of a training example. More...
|
| |
| virtual void | errorGradient (double &value, Eigen::VectorXd &grad) |
| | Calculates the function value and gradient of all training examples. More...
|
| |
| virtual Eigen::VectorXd | error (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) |
| | Calculates the errors of given training examples. More...
|
| |
| virtual Eigen::VectorXd | gradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) |
| | Calculates the accumulated gradient of given training examples. More...
|
| |
| virtual void | errorGradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN, double &value, Eigen::VectorXd &grad) |
| | Calculates the accumulated gradient and error of given training examples. More...
|
| |
Common base class of all learning algorithms.
A learner combines a model and a training set so that an Optimizer can minimize the error function on the training set.