|
| | NeuroEvolutionAgent (int h, bool b, const std::string &a, bool compress=false, int m=0, bool fullyObservable=true, bool alphaBetaFilter=false, bool doubleExponentialSmoothing=false) |
| |
| | ~NeuroEvolutionAgent () |
| |
| virtual void | abandoneIn (Environment &environment) |
| | Abandon an agent in an environment. More...
|
| |
| virtual void | chooseAction () |
| | Choose an action and execute it in the environment. More...
|
| |
| virtual void | chooseOptimalAction () |
| | Choose an action and execute it in the environment. More...
|
| |
| virtual const Eigen::VectorXd & | currentParameters () |
| | Request the current parameters. More...
|
| |
| virtual unsigned int | dimension () |
| | Request the number of optimizable parameters. More...
|
| |
| virtual double | error () |
| | Compute error on training set. More...
|
| |
| virtual Eigen::VectorXd | gradient () |
| | Compute gradient of the error function with respect to the parameters. More...
|
| |
| virtual void | initialize () |
| | Initialize the optimizable parameters. More...
|
| |
| virtual bool | providesGradient () |
| | Check if the object provides a gradient of the error function with respect to its parameters. More...
|
| |
| virtual bool | providesInitialization () |
| | Check if the object knows how to initialize its parameters. More...
|
| |
| virtual void | setParameters (const Eigen::VectorXd ¶meters) |
| | Set new parameters. More...
|
| |
| void | setSigma0 (double sigma0) |
| |
| virtual | ~Agent () |
| |
| virtual | ~Optimizable () |
| |
| virtual void | finishedIteration () |
| | This callback is called after each optimization algorithm iteration. More...
|
| |
| virtual unsigned | examples () |
| | Request number of training examples. More...
|
| |
| virtual double | error (unsigned n) |
| | Compute error of a given training example. More...
|
| |
| virtual Eigen::VectorXd | gradient (unsigned n) |
| | Compute gradient of a given training example. More...
|
| |
| virtual void | errorGradient (int n, double &value, Eigen::VectorXd &grad) |
| | Calculates the function value and gradient of a training example. More...
|
| |
| virtual void | errorGradient (double &value, Eigen::VectorXd &grad) |
| | Calculates the function value and gradient of all training examples. More...
|
| |
| virtual Eigen::VectorXd | error (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) |
| | Calculates the errors of given training examples. More...
|
| |
| virtual Eigen::VectorXd | gradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) |
| | Calculates the accumulated gradient of given training examples. More...
|
| |
| virtual void | errorGradient (std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN, double &value, Eigen::VectorXd &grad) |
| | Calculates the accumulated gradient and error of given training examples. More...
|
| |