OpenANN  1.1.0
An open source library for artificial neural networks.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
List of all members | Public Member Functions | Public Attributes
net.Net Class Reference
+ Inheritance diagram for net.Net:

Public Member Functions

def __cinit__
 
def __dealloc__
 
def initialize
 
def input_layer
 
def alpha_beta_filter_layer
 
def fully_connected_layer
 
def restricted_boltzmann_machine_layer
 
def compressed_layer
 
def extreme_layer
 
def intrinsic_plasticity_layer
 
def convolutional_layer
 
def subsampling_layer
 
def maxpooling_layer
 
def local_response_normalization_layer
 
def dropout_layer
 
def output_layer
 
def compressed_output_layer
 
def add_layer
 
def add_output_layer
 
def set_regularization
 
def set_error_function
 
def use_dropout
 
def predict
 
def get_layer
 
def dimension
 
def set_parameters
 
def current_parameters
 
def save
 
def load
 

Public Attributes

 thisptr
 
 learner
 

Detailed Description

A multilayer feedforward network.

Member Function Documentation

def net.Net.__cinit__ (   self)
def net.Net.__dealloc__ (   self)
def net.Net.add_layer (   self,
  layer 
)
Add a layer.
def net.Net.add_output_layer (   self,
  layer 
)
Add an output layer.
def net.Net.alpha_beta_filter_layer (   self,
  delta_t,
  std_dev = 0.05 
)
Add an alpha-beta filter layer.
def net.Net.compressed_layer (   self,
  units,
  params,
  act,
  compression,
  std_dev = 0.05,
  bias = True 
)
Add a compressed layer.
def net.Net.compressed_output_layer (   self,
  units,
  params,
  act,
  compression,
  std_dev = 0.05 
)
Add a compressed output layer.
def net.Net.convolutional_layer (   self,
  featureMaps,
  kernelRows,
  kernelCols,
  act,
  std_dev = 0.05,
  bias = True 
)
Add a convolutional layer.
def net.Net.current_parameters (   self)
Get current parameters.
def net.Net.dimension (   self)
Get number of parameters.
def net.Net.dropout_layer (   self,
  dropout_probability 
)
Add a dropout layer.
def net.Net.extreme_layer (   self,
  units,
  act,
  std_dev = 5.0,
  bias = True 
)
Add an extreme layer.
def net.Net.fully_connected_layer (   self,
  units,
  act,
  std_dev = 0.05,
  bias = True 
)
Add a fully connected layer.
def net.Net.get_layer (   self,
  l 
)
Get the l-th layer.
def net.Net.initialize (   self)
def net.Net.input_layer (   self,
  dim1,
  dim2 = 1,
  dim3 = 1 
)
Add an input layer.
def net.Net.intrinsic_plasticity_layer (   self,
  target_mean,
  std_dev = 1.0 
)
Add an intrinsic plasticity layer.
def net.Net.load (   self,
  file_name 
)
def net.Net.local_response_normalization_layer (   self,
  k,
  n,
  alpha,
  beta 
)
Add a local response normalization layer.
def net.Net.maxpooling_layer (   self,
  kernelRows,
  kernelCols 
)
Add a maxpooling layer.
def net.Net.output_layer (   self,
  units,
  act,
  std_dev = 0.05 
)
Add an output layer.
def net.Net.predict (   self,
  x_numpy 
)
Predict output for given inputs, each row represents an instance.
def net.Net.restricted_boltzmann_machine_layer (   self,
  units,
  cd_n = 1,
  std_dev = 0.01,
  backprop = True 
)
Add an RBM.
def net.Net.save (   self,
  file_name 
)
def net.Net.set_error_function (   self,
  err 
)
Set the error function.
def net.Net.set_parameters (   self,
  parameters 
)
Set parameters of the network.
def net.Net.set_regularization (   self,
  l1_penalty = 0.0,
  l2_penalty = 0.0,
  max_squared_weight_norm = 0.0 
)
Set regularization coefficients.
def net.Net.subsampling_layer (   self,
  kernelRows,
  kernelCols,
  act,
  std_dev = 0.05,
  bias = True 
)
Add a subsampling layer.
def net.Net.use_dropout (   self,
  activate 
)
(De)activate dropout.

Member Data Documentation

net.Net.learner
net.Net.thisptr

The documentation for this class was generated from the following file: