OpenANN
1.1.0
An open source library for artificial neural networks.
|
Public Member Functions | |
def | __cinit__ |
def | __dealloc__ |
def | initialize |
def | input_layer |
def | alpha_beta_filter_layer |
def | fully_connected_layer |
def | restricted_boltzmann_machine_layer |
def | compressed_layer |
def | extreme_layer |
def | intrinsic_plasticity_layer |
def | convolutional_layer |
def | subsampling_layer |
def | maxpooling_layer |
def | local_response_normalization_layer |
def | dropout_layer |
def | output_layer |
def | compressed_output_layer |
def | add_layer |
def | add_output_layer |
def | set_regularization |
def | set_error_function |
def | use_dropout |
def | predict |
def | get_layer |
def | dimension |
def | set_parameters |
def | current_parameters |
def | save |
def | load |
Public Attributes | |
thisptr | |
learner | |
A multilayer feedforward network.
def net.Net.__cinit__ | ( | self) |
def net.Net.__dealloc__ | ( | self) |
def net.Net.add_layer | ( | self, | |
layer | |||
) |
Add a layer.
def net.Net.add_output_layer | ( | self, | |
layer | |||
) |
Add an output layer.
def net.Net.alpha_beta_filter_layer | ( | self, | |
delta_t, | |||
std_dev = 0.05 |
|||
) |
Add an alpha-beta filter layer.
def net.Net.compressed_layer | ( | self, | |
units, | |||
params, | |||
act, | |||
compression, | |||
std_dev = 0.05 , |
|||
bias = True |
|||
) |
Add a compressed layer.
def net.Net.compressed_output_layer | ( | self, | |
units, | |||
params, | |||
act, | |||
compression, | |||
std_dev = 0.05 |
|||
) |
Add a compressed output layer.
def net.Net.convolutional_layer | ( | self, | |
featureMaps, | |||
kernelRows, | |||
kernelCols, | |||
act, | |||
std_dev = 0.05 , |
|||
bias = True |
|||
) |
Add a convolutional layer.
def net.Net.current_parameters | ( | self) |
Get current parameters.
def net.Net.dimension | ( | self) |
Get number of parameters.
def net.Net.dropout_layer | ( | self, | |
dropout_probability | |||
) |
Add a dropout layer.
def net.Net.extreme_layer | ( | self, | |
units, | |||
act, | |||
std_dev = 5.0 , |
|||
bias = True |
|||
) |
Add an extreme layer.
def net.Net.fully_connected_layer | ( | self, | |
units, | |||
act, | |||
std_dev = 0.05 , |
|||
bias = True |
|||
) |
Add a fully connected layer.
def net.Net.get_layer | ( | self, | |
l | |||
) |
Get the l-th layer.
def net.Net.initialize | ( | self) |
def net.Net.input_layer | ( | self, | |
dim1, | |||
dim2 = 1 , |
|||
dim3 = 1 |
|||
) |
Add an input layer.
def net.Net.intrinsic_plasticity_layer | ( | self, | |
target_mean, | |||
std_dev = 1.0 |
|||
) |
Add an intrinsic plasticity layer.
def net.Net.load | ( | self, | |
file_name | |||
) |
def net.Net.local_response_normalization_layer | ( | self, | |
k, | |||
n, | |||
alpha, | |||
beta | |||
) |
Add a local response normalization layer.
def net.Net.maxpooling_layer | ( | self, | |
kernelRows, | |||
kernelCols | |||
) |
Add a maxpooling layer.
def net.Net.output_layer | ( | self, | |
units, | |||
act, | |||
std_dev = 0.05 |
|||
) |
Add an output layer.
def net.Net.predict | ( | self, | |
x_numpy | |||
) |
Predict output for given inputs, each row represents an instance.
def net.Net.restricted_boltzmann_machine_layer | ( | self, | |
units, | |||
cd_n = 1 , |
|||
std_dev = 0.01 , |
|||
backprop = True |
|||
) |
Add an RBM.
def net.Net.save | ( | self, | |
file_name | |||
) |
def net.Net.set_error_function | ( | self, | |
err | |||
) |
Set the error function.
def net.Net.set_parameters | ( | self, | |
parameters | |||
) |
Set parameters of the network.
def net.Net.set_regularization | ( | self, | |
l1_penalty = 0.0 , |
|||
l2_penalty = 0.0 , |
|||
max_squared_weight_norm = 0.0 |
|||
) |
Set regularization coefficients.
def net.Net.subsampling_layer | ( | self, | |
kernelRows, | |||
kernelCols, | |||
act, | |||
std_dev = 0.05 , |
|||
bias = True |
|||
) |
Add a subsampling layer.
def net.Net.use_dropout | ( | self, | |
activate | |||
) |
(De)activate dropout.
net.Net.learner |
net.Net.thisptr |