OpenANN  1.1.0
An open source library for artificial neural networks.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
List of all members | Public Member Functions
OpenANN::Normalization Class Reference

Normalize data so that for each feature the mean is 0 and the standard deviation is 1. More...

#include <Normalization.h>

+ Inheritance diagram for OpenANN::Normalization:

Public Member Functions

 Normalization ()
 
virtual Transformerfit (const Eigen::MatrixXd &X)
 Fit transformation according to training set X. More...
 
virtual Eigen::MatrixXd transform (const Eigen::MatrixXd &X)
 Transform the data. More...
 
Eigen::VectorXd getMean ()
 Get the mean of the original data. More...
 
Eigen::VectorXd getStd ()
 Get the standard deviations of the original data. More...
 
- Public Member Functions inherited from OpenANN::Transformer
virtual ~Transformer ()
 
virtual TransformerfitPartial (const Eigen::MatrixXd &X)
 Fit transformation according to subset of the training set X. More...
 

Detailed Description

Normalize data so that for each feature the mean is 0 and the standard deviation is 1.

Constructor & Destructor Documentation

OpenANN::Normalization::Normalization ( )

Member Function Documentation

virtual Transformer& OpenANN::Normalization::fit ( const Eigen::MatrixXd &  X)
virtual

Fit transformation according to training set X.

Parameters
Xeach row represents an instance
Returns
this for chaining

Implements OpenANN::Transformer.

Eigen::VectorXd OpenANN::Normalization::getMean ( )

Get the mean of the original data.

Returns
mean
Eigen::VectorXd OpenANN::Normalization::getStd ( )

Get the standard deviations of the original data.

Returns
standard deviations
virtual Eigen::MatrixXd OpenANN::Normalization::transform ( const Eigen::MatrixXd &  X)
virtual

Transform the data.

Parameters
Xeach row represents an instance
Returns
transformed data

Implements OpenANN::Transformer.


The documentation for this class was generated from the following file: