OpenANN
1.1.0
An open source library for artificial neural networks.
|
This is the complete list of members for OpenANN::Net, including all inherited members.
addLayer(Layer *layer) | OpenANN::Net | |
addOutputLayer(Layer *layer) | OpenANN::Net | |
alphaBetaFilterLayer(double deltaT, double stdDev=0.05) | OpenANN::Net | |
architecture | OpenANN::Net | protected |
backpropagate() | OpenANN::Net | protected |
compressedLayer(int units, int params, ActivationFunction act, const std::string &compression, double stdDev=0.05, bool bias=true) | OpenANN::Net | |
compressedOutputLayer(int units, int params, ActivationFunction act, const std::string &compression, double stdDev=0.05, bool bias=true) | OpenANN::Net | |
convolutionalLayer(int featureMaps, int kernelRows, int kernelCols, ActivationFunction act, double stdDev=0.05, bool bias=true) | OpenANN::Net | |
currentParameters() | OpenANN::Net | virtual |
deleteTrainSet | OpenANN::Learner | protected |
deleteValidSet | OpenANN::Learner | protected |
derivatives | OpenANN::Net | protected |
dimension() | OpenANN::Net | virtual |
dropout | OpenANN::Net | protected |
dropoutLayer(double dropoutProbability) | OpenANN::Net | |
error(unsigned int n) | OpenANN::Net | virtual |
error() | OpenANN::Net | virtual |
OpenANN::Learner::error(unsigned n) | OpenANN::Optimizable | inlinevirtual |
OpenANN::Learner::error(std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) | OpenANN::Optimizable | virtual |
errorFunction | OpenANN::Net | protected |
errorGradient(int n, double &value, Eigen::VectorXd &grad) | OpenANN::Net | virtual |
errorGradient(double &value, Eigen::VectorXd &grad) | OpenANN::Net | virtual |
errorGradient(std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN, double &value, Eigen::VectorXd &grad) | OpenANN::Net | virtual |
examples() | OpenANN::Net | virtual |
extremeLayer(int units, ActivationFunction act, double stdDev=5.0, bool bias=true) | OpenANN::Net | |
finishedIteration() | OpenANN::Net | virtual |
forwardPropagate(double *error) | OpenANN::Net | protected |
fullyConnectedLayer(int units, ActivationFunction act, double stdDev=0.05, bool bias=true) | OpenANN::Net | |
getLayer(unsigned int l) | OpenANN::Net | |
getOutputInfo(unsigned int l) | OpenANN::Net | |
gradient(unsigned int n) | OpenANN::Net | virtual |
gradient() | OpenANN::Net | virtual |
OpenANN::Learner::gradient(unsigned n) | OpenANN::Optimizable | inlinevirtual |
OpenANN::Learner::gradient(std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN) | OpenANN::Optimizable | virtual |
infos | OpenANN::Net | protected |
initialize() | OpenANN::Net | virtual |
initialized | OpenANN::Net | protected |
initializeNetwork() | OpenANN::Net | protected |
inputLayer(int dim1, int dim2=1, int dim3=1) | OpenANN::Net | |
intrinsicPlasticityLayer(double targetMean, double stdDev=1.0) | OpenANN::Net | |
L | OpenANN::Net | protected |
layers | OpenANN::Net | protected |
Learner() | OpenANN::Learner | |
load(const std::string &fileName) | OpenANN::Net | |
load(std::istream &stream) | OpenANN::Net | |
localReponseNormalizationLayer(double k, int n, double alpha, double beta) | OpenANN::Net | |
maxPoolingLayer(int kernelRows, int kernelCols) | OpenANN::Net | |
N | OpenANN::Learner | protected |
Net() | OpenANN::Net | |
numberOflayers() | OpenANN::Net | |
operator()(const Eigen::VectorXd &x) | OpenANN::Net | virtual |
operator()(const Eigen::MatrixXd &X) | OpenANN::Net | virtual |
outputLayer(int units, ActivationFunction act, double stdDev=0.05, bool bias=true) | OpenANN::Net | |
P | OpenANN::Net | protected |
parameters | OpenANN::Net | protected |
parameterVector | OpenANN::Net | protected |
propagateDataSet(DataSet &dataSet, int l) | OpenANN::Net | |
providesGradient() | OpenANN::Net | virtual |
providesInitialization() | OpenANN::Net | virtual |
regularization | OpenANN::Net | protected |
removeTrainingSet() | OpenANN::Learner | virtual |
removeValidationSet() | OpenANN::Learner | virtual |
restrictedBoltzmannMachineLayer(int H, int cdN=1, double stdDev=0.01, bool backprop=true) | OpenANN::Net | |
save(const std::string &fileName) | OpenANN::Net | |
save(std::ostream &stream) | OpenANN::Net | |
setErrorFunction(ErrorFunction errorFunction) | OpenANN::Net | |
setParameters(const Eigen::VectorXd ¶meters) | OpenANN::Net | virtual |
setRegularization(double l1Penalty=0.0, double l2Penalty=0.0, double maxSquaredWeightNorm=0.0) | OpenANN::Net | |
sparseAutoEncoderLayer(int H, double beta, double rho, ActivationFunction act) | OpenANN::Net | |
subsamplingLayer(int kernelRows, int kernelCols, ActivationFunction act, double stdDev=0.05, bool bias=true) | OpenANN::Net | |
tempError | OpenANN::Net | protected |
tempGradient | OpenANN::Net | protected |
tempInput | OpenANN::Net | protected |
tempOutput | OpenANN::Net | protected |
trainingSet(Eigen::MatrixXd &input, Eigen::MatrixXd &output) | OpenANN::Learner | virtual |
trainingSet(DataSet &trainingSet) | OpenANN::Learner | virtual |
trainSet | OpenANN::Learner | protected |
useDropout(bool activate=true) | OpenANN::Net | |
validationSet(Eigen::MatrixXd &input, Eigen::MatrixXd &output) | OpenANN::Learner | virtual |
validationSet(DataSet &validationSet) | OpenANN::Learner | virtual |
validSet | OpenANN::Learner | protected |
~Learner() | OpenANN::Learner | virtual |
~Net() | OpenANN::Net | virtual |
~Optimizable() | OpenANN::Optimizable | inlinevirtual |