OpenANN  1.1.0
An open source library for artificial neural networks.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
OpenANN::Net Member List

This is the complete list of members for OpenANN::Net, including all inherited members.

addLayer(Layer *layer)OpenANN::Net
addOutputLayer(Layer *layer)OpenANN::Net
alphaBetaFilterLayer(double deltaT, double stdDev=0.05)OpenANN::Net
architectureOpenANN::Netprotected
backpropagate()OpenANN::Netprotected
compressedLayer(int units, int params, ActivationFunction act, const std::string &compression, double stdDev=0.05, bool bias=true)OpenANN::Net
compressedOutputLayer(int units, int params, ActivationFunction act, const std::string &compression, double stdDev=0.05, bool bias=true)OpenANN::Net
convolutionalLayer(int featureMaps, int kernelRows, int kernelCols, ActivationFunction act, double stdDev=0.05, bool bias=true)OpenANN::Net
currentParameters()OpenANN::Netvirtual
deleteTrainSetOpenANN::Learnerprotected
deleteValidSetOpenANN::Learnerprotected
derivativesOpenANN::Netprotected
dimension()OpenANN::Netvirtual
dropoutOpenANN::Netprotected
dropoutLayer(double dropoutProbability)OpenANN::Net
error(unsigned int n)OpenANN::Netvirtual
error()OpenANN::Netvirtual
OpenANN::Learner::error(unsigned n)OpenANN::Optimizableinlinevirtual
OpenANN::Learner::error(std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN)OpenANN::Optimizablevirtual
errorFunctionOpenANN::Netprotected
errorGradient(int n, double &value, Eigen::VectorXd &grad)OpenANN::Netvirtual
errorGradient(double &value, Eigen::VectorXd &grad)OpenANN::Netvirtual
errorGradient(std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN, double &value, Eigen::VectorXd &grad)OpenANN::Netvirtual
examples()OpenANN::Netvirtual
extremeLayer(int units, ActivationFunction act, double stdDev=5.0, bool bias=true)OpenANN::Net
finishedIteration()OpenANN::Netvirtual
forwardPropagate(double *error)OpenANN::Netprotected
fullyConnectedLayer(int units, ActivationFunction act, double stdDev=0.05, bool bias=true)OpenANN::Net
getLayer(unsigned int l)OpenANN::Net
getOutputInfo(unsigned int l)OpenANN::Net
gradient(unsigned int n)OpenANN::Netvirtual
gradient()OpenANN::Netvirtual
OpenANN::Learner::gradient(unsigned n)OpenANN::Optimizableinlinevirtual
OpenANN::Learner::gradient(std::vector< int >::const_iterator startN, std::vector< int >::const_iterator endN)OpenANN::Optimizablevirtual
infosOpenANN::Netprotected
initialize()OpenANN::Netvirtual
initializedOpenANN::Netprotected
initializeNetwork()OpenANN::Netprotected
inputLayer(int dim1, int dim2=1, int dim3=1)OpenANN::Net
intrinsicPlasticityLayer(double targetMean, double stdDev=1.0)OpenANN::Net
LOpenANN::Netprotected
layersOpenANN::Netprotected
Learner()OpenANN::Learner
load(const std::string &fileName)OpenANN::Net
load(std::istream &stream)OpenANN::Net
localReponseNormalizationLayer(double k, int n, double alpha, double beta)OpenANN::Net
maxPoolingLayer(int kernelRows, int kernelCols)OpenANN::Net
NOpenANN::Learnerprotected
Net()OpenANN::Net
numberOflayers()OpenANN::Net
operator()(const Eigen::VectorXd &x)OpenANN::Netvirtual
operator()(const Eigen::MatrixXd &X)OpenANN::Netvirtual
outputLayer(int units, ActivationFunction act, double stdDev=0.05, bool bias=true)OpenANN::Net
POpenANN::Netprotected
parametersOpenANN::Netprotected
parameterVectorOpenANN::Netprotected
propagateDataSet(DataSet &dataSet, int l)OpenANN::Net
providesGradient()OpenANN::Netvirtual
providesInitialization()OpenANN::Netvirtual
regularizationOpenANN::Netprotected
removeTrainingSet()OpenANN::Learnervirtual
removeValidationSet()OpenANN::Learnervirtual
restrictedBoltzmannMachineLayer(int H, int cdN=1, double stdDev=0.01, bool backprop=true)OpenANN::Net
save(const std::string &fileName)OpenANN::Net
save(std::ostream &stream)OpenANN::Net
setErrorFunction(ErrorFunction errorFunction)OpenANN::Net
setParameters(const Eigen::VectorXd &parameters)OpenANN::Netvirtual
setRegularization(double l1Penalty=0.0, double l2Penalty=0.0, double maxSquaredWeightNorm=0.0)OpenANN::Net
sparseAutoEncoderLayer(int H, double beta, double rho, ActivationFunction act)OpenANN::Net
subsamplingLayer(int kernelRows, int kernelCols, ActivationFunction act, double stdDev=0.05, bool bias=true)OpenANN::Net
tempErrorOpenANN::Netprotected
tempGradientOpenANN::Netprotected
tempInputOpenANN::Netprotected
tempOutputOpenANN::Netprotected
trainingSet(Eigen::MatrixXd &input, Eigen::MatrixXd &output)OpenANN::Learnervirtual
trainingSet(DataSet &trainingSet)OpenANN::Learnervirtual
trainSetOpenANN::Learnerprotected
useDropout(bool activate=true)OpenANN::Net
validationSet(Eigen::MatrixXd &input, Eigen::MatrixXd &output)OpenANN::Learnervirtual
validationSet(DataSet &validationSet)OpenANN::Learnervirtual
validSetOpenANN::Learnerprotected
~Learner()OpenANN::Learnervirtual
~Net()OpenANN::Netvirtual
~Optimizable()OpenANN::Optimizableinlinevirtual