OpenANN  1.1.0
An open source library for artificial neural networks.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
List of all members | Public Member Functions
OpenANN::IPOPCMAES Class Reference

Evolution Strategies with Covariance Matrix Adaption and a restart strategy that increases the population size (IPOP-CMA-ES). More...

#include <IPOPCMAES.h>

+ Inheritance diagram for OpenANN::IPOPCMAES:

Public Member Functions

 IPOPCMAES ()
 Create an instance of IPOPCMAES. More...
 
virtual ~IPOPCMAES ()
 
virtual void setOptimizable (Optimizable &opt)
 Pass the objective function. More...
 
virtual void setStopCriteria (const StoppingCriteria &stop)
 Pass the stop criteria. More...
 
bool restart ()
 Restart the optimizer. More...
 
virtual void optimize ()
 Optimize until the optimization meets the stop criteria. More...
 
virtual bool step ()
 Execute one optimization step. More...
 
Eigen::VectorXd getNext ()
 Get next parameter vector. More...
 
void setError (double fitness)
 Set fitness of last individual. More...
 
bool terminated ()
 Did the optimizer finish? More...
 
virtual Eigen::VectorXd result ()
 Determine the best result. More...
 
virtual std::string name ()
 Get the name of the optimization algorithm. More...
 
void setSigma0 (double sigma0)
 Set the initial step size. More...
 
- Public Member Functions inherited from OpenANN::Optimizer
virtual ~Optimizer ()
 

Detailed Description

Evolution Strategies with Covariance Matrix Adaption and a restart strategy that increases the population size (IPOP-CMA-ES).

IPOP-CMA-ES is an evolutionary optimization algorithm that requires no gradient. The following stopping criteria will be regarged:

IPOPCMAES does not support step-wise execution with step(). Use the functions getNext() and setError() instead to get the next parameter vector and set fitness values respectively.

[1] Hansen and Ostermeier: Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation, 9 (2), pp. 159-195, 2001.

[2] Auger and Hansen: A Restart CMA Evolution Strategy With Increasing Population Size. IEEE Congress on Evolutionary Computation, pp. 1769-1776, 2005.

Constructor & Destructor Documentation

OpenANN::IPOPCMAES::IPOPCMAES ( )

Create an instance of IPOPCMAES.

virtual OpenANN::IPOPCMAES::~IPOPCMAES ( )
virtual

Member Function Documentation

Eigen::VectorXd OpenANN::IPOPCMAES::getNext ( )

Get next parameter vector.

Returns
parameter vector
virtual std::string OpenANN::IPOPCMAES::name ( )
virtual

Get the name of the optimization algorithm.

Returns
name of the optimization algorithm

Implements OpenANN::Optimizer.

virtual void OpenANN::IPOPCMAES::optimize ( )
virtual

Optimize until the optimization meets the stop criteria.

Implements OpenANN::Optimizer.

bool OpenANN::IPOPCMAES::restart ( )

Restart the optimizer.

Returns
optimizer is still running
virtual Eigen::VectorXd OpenANN::IPOPCMAES::result ( )
virtual

Determine the best result.

Returns
the best parameter the algorithm found

Implements OpenANN::Optimizer.

void OpenANN::IPOPCMAES::setError ( double  fitness)

Set fitness of last individual.

Parameters
fitnessfitness
virtual void OpenANN::IPOPCMAES::setOptimizable ( Optimizable optimizable)
virtual

Pass the objective function.

Parameters
optimizableobjective function, e. g. error function of an ANN

Implements OpenANN::Optimizer.

void OpenANN::IPOPCMAES::setSigma0 ( double  sigma0)

Set the initial step size.

Parameters
sigma0initial step size
virtual void OpenANN::IPOPCMAES::setStopCriteria ( const StoppingCriteria sc)
virtual

Pass the stop criteria.

Parameters
scthe parameters used to stop the optimization

Implements OpenANN::Optimizer.

virtual bool OpenANN::IPOPCMAES::step ( )
virtual

Execute one optimization step.

Implements OpenANN::Optimizer.

bool OpenANN::IPOPCMAES::terminated ( )

Did the optimizer finish?

Returns
terminated

The documentation for this class was generated from the following file: