OpenANN  1.1.0
An open source library for artificial neural networks.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
List of all members | Public Member Functions
OpenANN::AlphaBetaFilter Class Reference

A recurrent layer that can be used to smooth the input and estimate its derivative. More...

#include <AlphaBetaFilter.h>

+ Inheritance diagram for OpenANN::AlphaBetaFilter:

Public Member Functions

 AlphaBetaFilter (OutputInfo info, double deltaT, double stdDev)
 
virtual OutputInfo initialize (std::vector< double * > &parameterPointers, std::vector< double * > &parameterDerivativePointers)
 Fill in the parameter pointers and parameter derivative pointers. More...
 
virtual void initializeParameters ()
 Initialize the parameters. More...
 
virtual void updatedParameters ()
 Generate internal parameters from externally visible parameters. More...
 
virtual void reset ()
 
virtual void forwardPropagate (Eigen::MatrixXd *x, Eigen::MatrixXd *&y, bool dropout, double *error=0)
 Forward propagation in this layer. More...
 
virtual void backpropagate (Eigen::MatrixXd *ein, Eigen::MatrixXd *&eout, bool backpropToPrevious)
 Backpropagation in this layer. More...
 
virtual Eigen::MatrixXd & getOutput ()
 Output after last forward propagation. More...
 
virtual Eigen::VectorXd getParameters ()
 Get the current values of parameters (weights, biases, ...). More...
 
- Public Member Functions inherited from OpenANN::Layer
virtual ~Layer ()
 

Detailed Description

A recurrent layer that can be used to smooth the input and estimate its derivative.

In a partially observable Markov decision process (POMDP), we can use an $ \alpha-\beta $ filter to smooth noisy observations and estimate the derivatives. We can e.g. estimate the velocities from the positions of an object.

Constructor & Destructor Documentation

OpenANN::AlphaBetaFilter::AlphaBetaFilter ( OutputInfo  info,
double  deltaT,
double  stdDev 
)

Member Function Documentation

virtual void OpenANN::AlphaBetaFilter::backpropagate ( Eigen::MatrixXd *  ein,
Eigen::MatrixXd *&  eout,
bool  backpropToPrevious 
)
virtual

Backpropagation in this layer.

Parameters
einpointer to error signal of the higher layer
eoutreturns a pointer to error signal of the layer (derivative of the error with respect to the input)
backpropToPreviousbackpropagate errors to previous layers

Implements OpenANN::Layer.

virtual void OpenANN::AlphaBetaFilter::forwardPropagate ( Eigen::MatrixXd *  x,
Eigen::MatrixXd *&  y,
bool  dropout,
double *  error = 0 
)
virtual

Forward propagation in this layer.

Parameters
xpointer to input of the layer (with bias)
yreturns a pointer to output of the layer
dropoutenable dropout for regularization
errorerror value, will be updated with regularization terms

Implements OpenANN::Layer.

virtual Eigen::MatrixXd& OpenANN::AlphaBetaFilter::getOutput ( )
virtual

Output after last forward propagation.

Returns
output

Implements OpenANN::Layer.

virtual Eigen::VectorXd OpenANN::AlphaBetaFilter::getParameters ( )
virtual

Get the current values of parameters (weights, biases, ...).

Returns
parameters

Implements OpenANN::Layer.

virtual OutputInfo OpenANN::AlphaBetaFilter::initialize ( std::vector< double * > &  parameterPointers,
std::vector< double * > &  parameterDerivativePointers 
)
virtual

Fill in the parameter pointers and parameter derivative pointers.

Parameters
parameterPointerspointers to parameters
parameterDerivativePointerspointers to derivatives of parameters
Returns
information about the output of the layer

Implements OpenANN::Layer.

virtual void OpenANN::AlphaBetaFilter::initializeParameters ( )
virtual

Initialize the parameters.

This is usually called before each optimization.

Implements OpenANN::Layer.

virtual void OpenANN::AlphaBetaFilter::reset ( )
virtual
virtual void OpenANN::AlphaBetaFilter::updatedParameters ( )
virtual

Generate internal parameters from externally visible parameters.

This is usually called after each parameter update.

Implements OpenANN::Layer.


The documentation for this class was generated from the following file: