OpenANN
1.1.0
An open source library for artificial neural networks.
|
This benchmark is based on the example program Two Spirals.
The result will look like this:
$ ./TwoSpiralsBenchmark Architecture: 2-20-10-1 (bias) 281 parameters .................................................................................................... Finished 100 runs. Correct Accuracy Time/ms Iterations Mean+-StdDev 188.250+-1.554 0.975+-0.112 5981 768+-21.979 [min,max] [177,193] [0.917,1.000] [206,4342] Architecture: 2-20-20-1 (bias) 501 parameters .................................................................................................... Finished 100 runs. Correct Accuracy Time/ms Iterations Mean+-StdDev 188.570+-1.448 0.977+-0.104 12466 464+-13.867 [min,max] [180,193] [0.933,1.000] [192,1216] Architecture: 2-20-20-1 (bias), Compression: 3-21-21 501 parameters .................................................................................................... Finished 100 runs. Correct Accuracy Time/ms Iterations Mean+-StdDev 186.060+-1.533 0.964+-0.110 8174 305+-9.903 [min,max] [175,193] [0.907,1.000] [153,1038] Architecture: 2-20-20-1 (bias), Compression: 3-12-12 312 parameters .................................................................................................... Finished 100 runs. Correct Accuracy Time/ms Iterations Mean+-StdDev 185.660+-1.709 0.962+-0.123 5248 511+-16.075 [min,max] [168,192] [0.870,0.995] [192,2886] Architecture: 2-20-20-1 (bias), Compression: 3-6-6 186 parameters .................................................................................................... Finished 100 runs. Correct Accuracy Time/ms Iterations Mean+-StdDev 184.750+-1.914 0.957+-0.138 3033 679+-18.572 [min,max] [164,193] [0.850,1.000] [209,3023] Architecture: 2-20-20-1 (bias), Compression: 3-6-3 183 parameters .................................................................................................... Finished 100 runs. Correct Accuracy Time/ms Iterations Mean+-StdDev 185.140+-1.798 0.959+-0.129 3381 775+-20.821 [min,max] [172,193] [0.891,1.000] [234,6584]